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Abstract
We employ symbolic calculation to perform a systematic study of the
accuracy of split-step Fourier transform methods for the time-dependent Gross–
Pitaevskii equation (GPE). Provided the most recent approximation for the
wavefunction is always used in the nonlinear atom–atom interaction energy,
every split-step algorithm we have tried has the same-order time stepping error
for the nonlinear GPE and for the linear Schrödinger equation.

PACS numbers: 02.70.Wz, 02.70.Hm, 03.75.Kk

By now, a wealth of empirical and theoretical evidence has accumulated to the effect that the
time-dependent and independent versions and multi-component generalizations of the Gross–
Pitaevskii equation (GPE) give the basic picture of most phenomena taking place in a weakly
interacting dilute-gas atomic Bose–Einstein condensate [1–3]. There are hundreds of journal
publications involving direct numerical solutions of the time-dependent and time-independent
versions of the GPE, and essentially the same nonlinear Schrödinger equation is a central
topic in nonlinear optics [4]. A claim of complete classification of the numerical methods for
just the time-dependent problems would be pretentious, but the Crank–Nicholson method and
various split-step schemes are common themes. For examples, see [5–8] and the references
therein.

Curiously, many research groups have their own numerical methods, the algorithms are
often ad hoc, and the convergence properties are not always stated (known?) explicitly. Even
at the risk of further proliferation of numerical methods, the purpose of this letter is to point
out in the context of the GPE that symbolic calculation, in our case using Mathematica [9], is
a powerful tool for developing numerical algorithms with known and controlled properties.

Our focus is on the analogues of the classic split-step fast Fourier transform method for
the Schrödinger equation [10]. The idea is to split the GPE equation into two parts, one of
which only refers to the momentum operator and the other only to the position operator. The
wavefunction is then evolved alternatingly in momentum space and in real space. Nonetheless,
the original split-operator method [10] is formally based on the algebra of linear operators, and
does not directly go over to the nonlinear GPE. Here, we study the accuracy of split-operator
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methods for the GPE using power series expansions in the time step. While straightforward
in principle, with increasing order such expansions rapidly become unwieldy and are only
manageable using symbolic calculation. We directly demonstrate that there is a simple and
computationally inexpensive way to include the nonlinearity so that the split-operator method
works for the GPE and the favourable properties of the original algorithm [10] that have made
it a huge success are preserved.

We first recap the case of the time-dependent Schrödinger equation, for the time being
in one spatial dimension. For brevity of the notation we use units such that the mass of the
particle and the constant h̄ both equal unity. The problem is to integrate

i
∂

∂t
ψ(x, t) = [T + V ]ψ(x, t), T ≡ −1

2

∂2

∂x2
, V ≡ V (x). (1)

A time step from t to t + h is carried out formally as

ψ(x, t + h) = exp[−ih(T + V )]ψ(x, t). (2)

In position representation exp(−ihV ) means multiplication by the function e−ihV (x). Similarly,
in momentum representation, after the Fourier transform F[ψ(x, t)] → ψ̃(p, t), the kinetic-
energy exponential multiplies the wavefunction ψ̃(p, t) by e−ihp2/2. However, the operators T
and V do not commute, so exp[−ih(T + V )] �= exp(−ihV ) exp(−ihT ), and the exponential
of the sum of the two operators may be difficult to calculate.

Split-step methods attempt to get past the obstacle of noncommuting operators by
approximating

eλ(A+B) � eλβnBeλαnA . . . eλβ1Beλα1A. (3)

In the present discussion it does not matter what the linear operators are, so we refer to generic
A and B. We need not be dealing with time stepping, thus we write the scalar parameter as λ.
In general, though, we regard λ as small in absolute value. The idea of split-operator methods
is to pick the coefficients αi and βi so that the right-hand side of the split (3) approximates the
left-hand side to as high an order in λ as possible.

We seek split-operator methods using symbolic manipulation on Mathematica [9]. We
first expand the exponentials. Next, in order to compare the left- and right-hand sides of (3),
it is expedient (although in principle unnecessary) to put the operators into a standard order,
e.g., all operators B to the left and all operators A to the right. This introduces commutators of
the operators, as in AB = BA + [A,B], commutators of A and B with the commutators that
are also put in a standard order, and products of commutators that are left in the order in which
they originally emerge. Order by order in λ and operator product by operator product we then
match the terms on the left- and right-hand sides of (3). This gives multivariate polynomial
equations in αi and βi that Mathematica solves easily and completely, up to a point.

The simplest nontrivial split-operator method found in this way is the original split-
operator algorithm [10] with three exponentials. The general operator-algebra argument does
not distinguish between the operators A and B, and the choices for the nonzero coefficients
α1 = α2 = 1/2, β1 = 1 and β1 = β2 = 1/2, α2 = 1 will both do. We have, for instance, a
split-operator representation

exp

{
−ih

[
−1

2

∂2

∂x2
+ V (x)

]}
= exp

(
ih

4

∂2

∂x2

)
exp[−ihV (x)] exp

(
ih

4

∂2

∂x2

)
+ O(h3). (4)

Time stepping as in (2) is implemented using the fast Fourier transformation. This algorithm
preserves the norm of the wavefunction, which is an issue when standard PDE solvers are
applied to the time-dependent Schrödinger equation. The implementation of the exponential
of the kinetic energy is a high-order spectral method, and the exponential with the potential
energy is done exactly in principle.
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Table 1. Nonzero coefficients for minimal split-step methods with real coefficients for the orders of

error O(λ3), O(λ4) and O(λ5). The temporary notations are � =
√

16−48γ +45γ 2−12γ 3

9−12γ
, ξ = 1

2− 3√2
and γ is a real parameter restricted so that � remains real.

O(λ3) O(λ4) O(λ5)

α1
1
2 1 − 3γ−4/3∓�

2γ (γ∓�)
1
2 ξ

β1 1 γ∓�
2 ξ

α2
1
2

3−4γ
2(2−3γ )

1− 3√2
2 ξ

β2
γ±�

2 − 3√2ξ

α3
4/3−γ±�
2γ (γ±�)

1− 3√2
2 ξ

β3 1-γ ξ

β4
1
2 ξ

A five-exponential split exists with an error O(λ4), but the coefficients αi and βi are not
real and the algorithm is not absolutely stable. There is a whole family of six-exponential
splits with a continuous-valued free parameter that all have an error O(λ4), and the coefficients
are real for a range of the values of the free parameter. It takes a seven-exponential split to
gain another reduction of the error to O(λ5). Higher order methods may also be found. Here
we stop at O(λ5), and list in table 1 the coefficients αi, βi for all minimal (smallest possible
number of exponentials for the given order) split-operator methods with real coefficient. The
first publication known to us that gives these coefficients is [11].

On the other hand, the Gross–Pitaevskii equation (GPE) reads in suitable units

i
∂

∂t
ψ =

[
−1

2

∂2

∂x2
+ V (x) + g|ψ |2

]
ψ, (5)

where g (usually > 0) encapsulates the strength of the (usually repulsive) atom–atom
interactions. The GPE is nonlinear and as such does not fit the operator algebra framework
we have used to derive split-operator methods, but the square of the wavefunction formally
behaves like a potential energy. One is tempted to add it to the potential-energy term in the
time stepper, as in

ψ(x, t + h) � exp

(
ih

4

∂2

∂x2

)
exp{−ih[V (x) + g|ψ(x, t)|2]} exp

(
ih

4

∂2

∂x2

)
ψ(x, t). (6)

Nonetheless, as the wavefunction evolves in time, it is not clear what to insert for the square
of the wavefunction in the exponential. In fact, doing the step as in (6) drops an order in
accuracy, and the error turns out to be O(h2).

In an attempt to find a better method we split the split-operator step explicitly,

ψ0 = ψ(x, t), ψ1 = exp

(
ih

4

∂2

∂x2

)
ψ0,

ψ2 = exp{−ih[V (x) + g|c0ψ0 + c1ψ1|2]}ψ1, ψ(x, t + h) = exp

(
ih

4

∂2

∂x2

)
ψ2.

(7)

At the stage when the square of the wavefunction is needed, there are already two versions of
the wavefunction available. The hope is to pick a linear combination of the two with so far
unknown real coefficients c0 and c1 to regain the error O(h3).

In order to produce the ‘exact’ result for comparisons we write

ψ(x, t + h) = ψ(x, t) +
h

1!

∂

∂t
ψ(x, t) +

h2

2!

∂2

∂t2
ψ(x, t) + · · · . (8)
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The nth time derivative of the wavefunction is obtained inductively. The GPE itself amounts
to

∂ψ

∂t
= −i

[
−1

2

∂2

∂x2
+ V (x) + g|ψ |2

]
ψ. (9)

The second time derivative of ψ is found by taking the time derivative of (9), which after an
exchange of the order of spatial and time derivatives gives

∂2ψ

∂t2
= −i

[
−1

2

∂2

∂x2
+ V (x) + g|ψ |2

]
∂ψ

∂t
− igψ

(
ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
. (10)

But now, using (9) again, all time derivatives may be eliminated from the right-hand side of
(10) in favour of spatial derivatives and multiplicative functions. The second time derivative
is thereby expressed in terms of spatial derivatives of ψ with orders ranging from 0 to 4.
The third, fourth, etc, time derivatives are found similarly in terms of spatial derivatives only.
This procedure is executed with a simple Mathematica algorithm, where we treat real and
imaginary parts of the wavefunction separately. A mechanical implementation is well advised
as the terms multiply rapidly with the order of time derivative; after a complete expansion
of the spatial derivatives, the real part of the fourth time derivative already has 168 linearly
independent terms.

The split-operator algorithm to be tested is implemented by expanding the exponentials
into power series of the operators, e.g.,

exp

(
ih

4

∂2

∂x2

)
= 1 +

ih

4

∂2

∂x2
+

1

2!

(
ih

4

∂2

∂x2

)2

+ · · · , (11)

and acting the series-form operators on the initial wavefunction in the sequence prescribed in
(3). Such expansions also become extremely tedious when the order in h increases, but an
implementation with Mathematica is straightforward.

Finally, we compare the exact result and the split-step result. For each order, and for each
linearly independent term in a given order, we find the condition that the results coincide.
This again gives multivariate polynomial equations for the unknown coefficients ci , which
Mathematica solves easily. Our Mathematica programs are small and simple, although the
desire to keep the run times short (here, at most a couple of hours) has forced us into a few
unexpected implementation tricks.

It turns out that the method (7) gives an error O(h3) if and only if the coefficients c0 and
c1 satisfy c0 = 0, |c1| = 1; in other words, if the most recent available wavefunction is used
in g|ψ |2.

We have done a similar analysis for all split-operator methods with the coefficients listed
in table 1, starting with both the position step and the momentum step. The result was the
same every time: if the most recently available version of the wavefunction is used whenever
g|ψ |2 is needed alongside the potential energy, the split-operator method for the GPE has
the same order of accuracy in the time step as the corresponding split-operator method for
the Schrödinger equation. Whether using the most recent update of the wavefunction is
also a necessary condition for the same order of time stepping error in the linear and in the
nonlinear problem depends on the split-operator method on hand. For instance, if one starts
the three-split method with a position step and writes

ψ0 = ψ(x, t), ψ1 = exp{[− 1
2 ih[V (x) + g|ψ0|2]}ψ0, ψ2 = exp

(
ih

2

∂2

∂x2

)
ψ1,

ψ(x, t + h) = exp
{− 1

2 ih[V (x) + g|c0ψ0 + c1ψ2 + c2ψ2|2]
}
ψ1,

(12)

all choices with c2 = ±1 and c1 = −c0 give an error O(h3).
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In the seven-step O(h5) method on the order of 20 000 terms must identically cancel to
validate our result, so that clearly it is not an accident. We believe that our observation holds for
every minimal split-step method, for arbitrary high orders. Also, so far our examples have been
in one spatial dimension. The split-operator algorithms for the Schrödinger equation work
for arbitrary operators A and B, and go over unchanged to any number of spatial dimensions.
Replacing the second derivative in position with a multidimensional Laplacian should not
change anything in the underlying structure of the split-operator method or the exact result in
the GPE case either. Our best guess is that the split-operator algorithms for the GPE work the
same way in more than one spatial dimension. We have verified this explicitly for the O(h3)

three-exponential splits in two and three spatial dimensions.
Our results undoubtedly originate from some algebraic structure possessed by differential

operators. Suzuki [12] has, in fact, classified split-operator methods such as (3), and not only
for linear operators but also when eλA stands for a member of a Lie group generated by A.
Mapping of the initial state to the final state over a time t in Hamiltonian mechanics serves as
an example. The GPE may be derived from a classical Hamiltonian, and as such it fits Suzuki’s
framework. However, there is a (at least practical) difference from the schemes considered by
Suzuki [12] and pursued with symplectic integrators [7] that in the presence of the nonlinearity
we do not solve the GPE without the spatial derivatives exactly, which means that we do not
construct the corresponding operator eλA exactly. Here this added approximation seems to
have no ill effect on the accuracy of higher order split-operator methods. Bandrauk and Shen
[13] have presented analytical and numerical considerations closely related to ours, but our
findings are more general in some respects: their argument does not apply to the six-exponent
O(h4) methods, we include an external potential V (x), and we demonstrate that, as far as
the order of the numerical error is concerned, it is immaterial whether one starts the operator
splitting with a position or a momentum step.

At any rate, our point is symbolic calculation as a tool, not to what extent our results may
or may not be considered new. Understanding the convergence properties of algorithms,
such as the scaling of truncation error with spatial or temporal step size, is an integral
part of sound computational practice. Traditionally, such understanding arises from pen-
and-paper mathematics and/or numerical experiments. We are demonstrating here another
mode, brute-force symbolic calculation. For instance, computationally demanding problems
involving sets of coupled GPEs are encountered in multi-component condensates, and in
atom–molecule coupling. Integrating the GPE and related equations in imaginary time, a
frequently employed method to find the ground state for nonlinearly coupled classical fields
invites additional interesting and possibly important related questions. Now, given a specific
problem, someone whose expertise and interest lie in physics rather than numerical methods
could readily investigate the convergence of an algorithm and develop higher order algorithms
symbolically.

In conclusion, we promote the use of symbolic calculation, possibly extensive symbolic
calculation, as a tool for developing numerical algorithms. In our specific example we have
demonstrated that, by using the most recent update as the wavefunction wherever the square
of the wavefunction is needed alongside the potential energy, the split-step Fourier transform
method goes over from the Schrödinger equation to the Gross–Pitaevskii equation with all of
its favourable properties intact.
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